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On-off convection: Noise-induced intermittency near the convection threshold
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A phenomenological nonlinear stochastic model of intermittency experimentally observed by Behn, Lange,
and JohnPhys. Rev. E58, 2047 (1998] in the electrohydrodynamic convection in nematics under dichoto-
mous noise is proposed. This has the structure of the two-dimensional Swift-Hohenberg equation for local
convection variable with fluctuating threshold. Numerical integration of the model equation shows intermittent
emergence of convective pattern. Its statistics are found to obey those known, so far, for on-off intermittency.
In the course of time, although the pattern intensity changes intermittently, no evident pattern change is
observed. Adding additive noise, we observe an intermittent change of convective pattern.
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[. INTRODUCTION diction of the existence of the transition was quite unex-

pected. In addition, they predicted that the instability of

Intermittency is a ubiquitous phenomenon in nonlinearplanar alignment of directors may cause on-off intermittency.
dynamics, and is characterized by abrupt insertions of spasery recently, John, Stannarius, and Beii] experimen-

tially or temporally highly random evolutions. The most fa- tally proved the existence of the transition, and furthermore

mous one is known from the small-scale dynamics in hydroVerified the intermittency observed after the transition shows

dynamic turbulenc€l]. In dynamical systems, several types @ Signal of on-off intermittency, observing the laminar dura-

of intermittent evolution of dynamical variables have beention distribution, where the laminar state implies the planar

observed in association with the destruction of limit cycle@ignment of directors. _ _
oscillations[2,3]. In 1985, on the other hand, an intermit- It is known that the on-off intermittency has three charac-

tency different from them was first reported when a particu—teriStiC statistic$S]: (i) the probability density?(p) for p(t),

lar chaotic motion, i.e., synchronized chaos in a coupled chat-he magnitude of the deviation from the particular chaotic

. . 7l+77 .
otic oscillator system, undergoes the instability as thezumbarn%rgfs?:;\j/’eo\?;ﬁ;thzi?iggggﬁgﬁ&gg ity of méhti?ne
coupling constant is changedt]. This intermittency has seriest p(1)!} exhibitsépower lawo— @2 in a low-frequency
guite interesting statistical law$], and is now known as APy A .
on-off intermittency[6—8]. On-off intermittency has nowa- rﬁglon,baang_m)dglven an a?prorr])rlalltely smgll thFeShq”“Em

; ' - e probability densit or the laminar duratiorr takes
dayg been opserved in many fields of dynamical systemédn ;’S m toti?:/ fornQ(e)(o?r_(m) in a certain wide ranae of
particularly, with small degrees of freeddm]. Furthermore 6 31/'hpf' i lained b 9 Vi
very recently, the intermittency in systems with large degree [6]- 'he Irst tV\.IO _asy.mptotl'c aws are expianed by soling
of freedom has been reportég]. a nonlinear multiplicative noise model for the time evolution

Recently, Behn, Lange, and JotBLJ) [9] developed the of p(t), and the third law is derived by the theory of the first
theory of the electrohydrodynamic convection in nematic “q_gas_sagebtm:je pro_blem of EI’OWI’\I?H motion, Wh'%h IS S:mﬁ).ly
uid crystal system subject to the spatially uniform dichoto-2€"V€d Py dropping out the nonlinear term in the multipli-
mous noise without any temporally periodic field, and Con-Cat!Ve noise model. Furthermore,_ accort_dlng to the multipli-
cluded the possibility of the existence of the instability Cativé noise model, the exponentis obtained as
leading to the onset of the electrohydrodynamic convection
(EC) as the amplitude of the noise is increased. Convention- N
ally, the survey of dynamics of the EC in the liquid-crystal =1 @
system has been carried out under the application of a tem-

porally periodic electric field10]. In this sense, BLJ's pre- o
where\ (>0) represents the deviation of the external control

parameter from its critical value addis the intensity of the

*Email address: fujisaka@i.kyoto-u.ac.jp modulational noise of the so-called transverse expansion
"Email address: ouchi@kobe-du.ac.jp rate. Equatior{l) explains numerical results for several mod-
*Email address: ohara@acs.i.kyoto-u.ac.jp els quite well.
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The main aim of the present paper is to report a studyHerew(r,t) is the amplitude of the local convection pattern,
associated with the intermittent onset of the convective patke., describes the amplitude of the space-charge density with
tern by utilizing a stochastic, dynamical model of EC subjecta fundamental wave number or the gradient of the local
to external noise. However, for this aim, we do not intend toangle between director and the electrode plates in the experi-
describe the fundamental equation of motion from the basienental situation of BLJ. The(t) is the applied spatially
electrohydrodynamic equations of motion, but we study withuniform modulation noise and is assumed to have a vanish-
a phenomenological equation of motion, constructed by exing mean and the magnitudg ,
tending the basic equation in the convective problem in a
simple neutral fluid. *

The paper is prepared as follows. In Sec. Il we propose a I'e= JO (f(OF(0))dt, @
phenomenological equation of motion to imitate the BLJ in-
stability. This has the same structure as the Swift-Hohenberghere the angular brackets stand for the ensemble average. It
equation with the modulational threshold. A few characterisshould be noted that the assumption that the applied external
tics of the model equation are discussed. The results of itgeld is spatially uniform follows the theoretical—and the
numerical integration are given in Sec. lll. It is shown thatexperimental—conditions in Ref§9,11]. The model equa-
the instability of the quiescent statplanar alignment in the  tion (3) always has a quiescent state=0, which corre-
situation of BLJ leads to the onset of the on-off intermittent sponds to the complete planar alignment of director to the
generation of a convective pattern. Furthermore, in connecelectrodes. The linear stability of the conductiyglanar
tion with the temporal change of the pattern form, the effectylignment state is examined with the-mode growth rate,
of additive noise is studied. We give concluding remarks in
Sec. IV. M=A=(K=kg)? (k=]K]). (5)

If A<0, there exists no unstable mode, and the spatial pat-

tern eventually decays into the planar state. On the other

hand, the planar state is unstable for modes with wave num-

bers aroundk= kg for A=0. As numerically shown later, this
The convection problem in a simple, neutral fluid hassituation leads to the onset of the intermittent convective

been extensively studied both experimentally and theoretipattern.

cally [12—15. Near the convection threshold, there appear Before carrying out the numerical integration of Eg),

two kinds of modes: critical and noncritical. The former is let us comment on the characteristics of the phenomenologi-

directly relevant to the formation of a convective pattern andcal equation(3). In the one-dimensionallD) system, by

the latter is stably slaved to the critical mode. Adiabaticallyputting w= e+ c.c. with the complex amplitudey,

eliminating noncritical modes, Swift and HohenbeigH)  Which has a weak dependence, E@3) reduces to

derived the amplitude equation

Il. PHENOMENOLOGICAL MODEL OF
ELECTROHYRODYNAMIC CONVECTION UNDER
MULTIPLICATIVE NOISE

2

d
N+ () + 4k —
IX

AP(X,t)

at
MY - (2w we @

=3[yl (6)

Here we have puw®~3|y|?ye“o*+c.c. by retaining only

the fundamental mode. This equation describes the dynamics
near the onset of convective patt¢@8—15. Herew(r,t) is  of a convective pattern near the sinusoidal pattern under the
the vertical component of macroscopic local velocity of fluid modulational noise. On the other hand, in the 2D system,
at positionr and timet, \ is the deviation of the Rayleigh when the roll aligns almost in the direction, there still ex-
numberR from its critical valueR;, i.e., A\=R—R¢, Ko is ists fluctuation of pattern alignment in tlyedirection. This

the most unstable wave number a#d the two-dimensional  can be taken into account as follows. Since the mode satis-
(2D) Laplacian. Fon <0, all modes for any wave numbkr  fying the wave numbek+kj=kj is most unstable, and
are linearly stable, and therefore the conductive solution | —k + sk, , with ok, being small, we get 2,5k, + kizo_

=0 for any _p_OSitiorl’ is stable. |f, On-the other hand,takes SO, by noting that the fluctuation Sca|es|gﬁnd|y respec-
a small positive value, the modes with wave numbers kgar tively, in the x and y directions are related ds~12, the

become unstable, which eventually produces the roll typ%mplitudezp defined viaw= geo*+ c.c., obeys
convective pattern with the wave numbey.

In the present paper, we phenomenologically extend the ap(r 1) J 2\ 2
SH equation(2) noting that the applied external force in the ! - _> o= 3| |2
BLJ case is a spatially uniform noise. We start with the It ax  2Ko gy?
Swift-Hohenberg equation with random modulation in the )
threshold term, i.e.,

N+ f(t)+4k3

Here the approximationw®~3|y|%ye*+c.c. has been
used. This is an extension of the Newell-Whitehead equation
in a simple, neutral fluid systefil2] to the case with the
fluctuation-modulated threshold.

aw(r,t)
at

=[N+f(1)—(V2+k3)Zw—ws, 3
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()
0.16 T T © T T
I i ]
p(t) .
r ( 1 FIG. 1. (@) Temporal evolution ofp(t) ob-
I | ] tained by numerically solving Eq3). The initial
I | condition was chosen such that initially(r,0) at
0 bt e . . was) each lattice point, is randomly distributed close to
0 2000 4000 6000 8000 10000

time zero. The parameter values aBe=10 and y
=50 (I't=4x%103). (b) and(c) Spatial patterns

at the times 3500 and 4927, respectively. These
patterns correspond to the times denoted by the
arrows in(a).

IlI. ON-OFF CONVECTION
1—(yI2)At]f(t—At) + V2D AtG(t
AND EFFECT OF THERMAL NOISE f(t)= 1= (2 14(-(7/2))At ® ,

(13

Hereafter we consider the 2D system contained in a box
with the linear scalé&. The quantityp(t) which measures the WhereG(t) is the Gaussian noise with the meg@(t))=0
extent of the deviation from the planar alignment of director,and the variancéG(t)?=1. Carrying out the inverse Fou-
is defined by rier transform ofw, (t+ At), we obtainw(r,t+At). Repeat-
ing this procedure, we can numerically integrate [Eg).
1 12 Hereafter we use the parameter valuds=32, \=2
p(t)Z[—zj [w(r,t)]°dr (8)  x1073 ky=0.25, Ax=m, At=5X10*, unless other-
L wise stated.
Figure Xa) shows the temporal evolution p{t) obtained
y numerically solving Eq(3) and Figs. 1b) and Xc) are the
Spatial patterns, respectively, corresponding to the times de-
noted by the arrows in Fig.(4). One clearly observes that
the temporal evolution of(t) shows an intermittency com-
posed of laminar time intervals where no apparent pattern
change is observed and a burst region where the spatial pat-
e'[Segn with the wave numbék, is observed. The pattern for-
mation is observed in temporally highly localized regions.
The temporal evolution, as shown in Figal, is quite simi-
lar to the so called on-off intermittendy—8]. In order to
examine the statistics of the temporal evolutionof), we
will compare the statistical laws of on-off intermittency with
(R(1))=0, (R()R(0))=2D &(t) (10) those from Fig. (a). To do that, we first have to know the
value of the noise intensity of local transverse expansion

with positive constanty andD corresponding, respectively, fate. This is calculated as follows. (t) is sufficiently
to the inverse characteristic time ft) and the intensity of ~small, it obeys
R(t). The noise intensity'; of f(t) is therefore given as

b p()=[N+f(1)]p(t)—

In other words, this quantity evaluates the intensity of th
convective pattern. If there exists no convective motion, on
obtainsp(t) =0.

In order to carry out the numerical integration of Eg)
for the 2D system, the system is divided itN&X N sites with
the lattice spacing\x. We will use the periodic boundary
condition. The applied spatially uniform random forfdg) is
assumed to be generated by the Ornstein-Uhlenbeck proc

f(t)=—yf()+R(1), (9)

whereR(t) is the Gaussian white noise with the statistics

p(t)L?

xf[(vzw)z—zkg(vW)2+kng]dr. (14)
We numerically solved Eq(3) with the quasispectral

method, combining the Euler method for time integration.
Namely, givenw(r,t), in terms of its Fourier transform
w, (1), Eq. (3) is numerically solved as

We neglected the contribution from the nonlinear tevhin
Eq. (3) becausep(t) is small enough, and used the periodic
boundary condition. Since the most unstable mode right
Wi (t+ AL =W (1) + [N+ F () Wi (1) — (W3) () VAL, above the threshold\(>0) has the wave numbeg, we
12) make the approximation to replac&{w)* and (Vw)? in
Eq. (14), respectively, bykgw? andk3w?. This replacement
with the combination of solving Eq9) as leads to the approximate equation of motion
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@, ool - we use a more long-time series, the (2 region may be-
O, 0 ] come wider. In Fig. &), the laminar duration distribution
D, 0.0015 - clearly shows the 2 law. Here the threshold,, separat-
:f:‘;’% ] ing laminar and burst states is chosen as 0.01. The exponent
KN 3/2 does not depend on the choicepgfas long as it is small

enough. One finds that the agreement of the present statisti-

cal characteristics, with those of on-off intermittency, is quite
well. This numerically proves that the present intermittency

] in Fig. 1(a) is identical to the on-off intermittency. Analyzing

_— the temporal evolution of the pattern intensity, we found that

0 ' 'p ' 1 the pattern appears intermittently provided the planar align-

. ment withw~0 becomes slightly unstable under the appli-

107 i ' ' ' cation of the multiplicative noise. We call this phenomenon

on-off convection
The next question concerns the temporal evolution of pat-

tern. A primitive picture on the temporal evolution of pattern
is as follows. Given initial condition, the syste®) ap-
proaches a steady state and forms an on-off convective pat-
tern, whose wavelength is aboutrZk, for small A(>0).

Due to the multiplicative noise effect, this pattern disappears

(the laminar region The disappearance of pattern may de-

stroy the memory of the details of the previous precise pat-

tern. In a certain time, a new pattern would be suddenly
generated, and this pattern might be different from the pre-
vious one. Figure 3 shows the numerical results of the tem-
poral evolution of patterns. Figuresd and 3c) are patterns

3 at the times denoted by the arrows in the temporal evolution

Q@) % of p(t) of Fig. 3@. Between the times corresponding to

| Figs. 3b) and 3c), there exist several laminar regions. The

above picture on the pattern change leads to the conclusion

"L that the patterns at these times are different. However, as
g 3 shown in Figs. &) and 3c), the system almost keeps its

e eer initial pattern once it is created, and only the pattern intensity

1 , " intermittently changes in time. This means that the pattern

reserves its memory in a robust way. This fact can be under-

stood as follows. When a pattern decays due to the noise
FIG. 2. Statistical laws op(t) numerically obtained(a) prob-  effect after a pattern is formed, the equation of moti@h
ability density;(b) power spectrum; ant) laminar duration distri-  can be approximated only by the linear ternpt) becomes

=
(arb. units) T

(o) |

bution. For details see the text. quite weak. Even for smafi(t), the system still reserves its
pattern{w(r)}, which again increases their local intensity of
p(=[N+f(t)]p(t). (15 {w(r)} in a spatially synchronized way when noise with

positive {\ +f(t)} is applied. Therefore, the pattern growth
This equation has a particular solutipr=0, which is con-  and decline sets in, in a synchronized way. This is the reason
sistent with the fact that E¢3) always has the same particu- why the pattern form does not change in time, except for its
lar solutionw(r,t)=0 for anyt andr. This equation is the intensity.
same as the linearized stochastic multiplicative noise model, As shown above, the convective pattern does not change
and therefore the extra exponepin P(p), the steady prob- for the equation of motioii3). In real systems, the temporal
ability density forp(t), is given byn=\/T'¢, as in Eq.(1).  evolution is affected by thermal noise. To take thermal noise

Figures 2a), 2(b), and Zc) are comparisons with numeri- into account, we consider the equation of motion

cal results derived from the time seriespgt) and the above
theoretical results of on-off intermittency. Probability densi- dw(r,t)
ties are obtained fon=10"% 5x10°%4, 103 and 1.5 T
X103, andI'y=4x10"2 (y=50D=10). Values of the
exponent 1+ 7) in P(p)xp 17, corresponding to sev- . .
eral values of\, were calculated byy=\/I";, and are de- Whereg represents the thermal noise and is supposed to be
noted by—0.625-0.75, etc., in Fig. @). One finds good Gaussian white,
agreement with numerical results. In Figbg, the power law
w~ (2 is observed in a smalb region, although the region  (g(r,t))=0, (g(r,1)g(r’,t"))=2I¢8(r—r")8(t—t').
where it holds is not sufficiently wide. It is expected that if (17)

=[N+f(1)—(VZ+k3)Zw—wi+g(r,t), (16)
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The I'y evaluates the intensity of thermal noise. Equation
(16) is numerically solved as
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FIG. 3. () Temporal evolution ofp(t) with-
out thermal noise fon=2x10"3. (b) and (c)
Spatial patterns of(r,t), respectively, at times
t=9568 and 17 738 denoted by the arrowsah

<G(r]'| ,tn)G(I’J—W,tn,)>=5”,5”,5nn/, (19)

wherer;; is the lattice position corresponding to the 2D lat-

At tice point index (,l) andt,=ty+nAt, (n=0,1,2 .. .).Fig-
w(r,t+At)=wo(r,t+At)+ ZFQ—ZG(r,t), ure 4a) displays the temporal evolution @f(t) and shows
(Ax) 18) that the intermittency characteristic is still reserved as far as

I’y is small. Figures ) and 4c) show the spatial patterns at

times denoted in Fig. (4). These figures clearly show the

wherew?(r,t+ At) is equivalent tow(r,t+At) numerically  spatial pattern after insertion of laminar states. This proves
obtained in the case without thermal noise, i.e., the inversthat the pattern change is not due to the threshold fluctuation
Fourier transform of Eq(12). The G(r,t) is the Gaussian but due to the existence of the additive noise corresponding

noise with the vanishing mean and the variance to thermal noise.
(@)
0.25 T T T T T T T T T
©
L (b) 1 .
p | | -
0
0 20000 40000 60000  {jme 80000 100000 FIG. 4. () Temporal evolution ofp(t) with
(b) (©) thermal noise forx=10"* and I'y=7?x 102,
97 97 (b) and (c) Spatial patterns ofv(r,t) at timest
=46 745 for(b) and 65 813 foKc) denoted by the
i arrows in(a).
: L
0 97
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IV. CONCLUDING REMARKS vanishing mean andf(t)f(0))=f2e "l instead of the
guaussian noise obeying the Ornstein-Uhlenbeck process,
here y>0 is the decay rate of correlation, and found that
the qualitative results of the statistics do not change. This
fact implies that the present on-off convection is free from
eqletails of applied noisej and supports the universality of the
is fundamentally the same as the Swift-Hohenberg equatio nset of on—off convection. In this Sense, the present model

eserves a simple nonlinear stochastic model of electrohy-

but contains the modulation threshold. drod ; i th ticall d . all
Numerically solving the phenomenological model, we rodynamic convection, theoretically and experimentally
studied by Behn and his co-workers.

found that the statistical laws derived from the temporal evo- . .

lution of the model dynamics, are the same as those known JSB reparted Fhe experlmgntal phase diagram for conduc-
for the on-off intermittency reported in systems with small 'Y€ and convective regions in thg=y)—U(=Ed) plane,
degrees of freedom. On the other hand, Jehal, observed Wherey andE are, respectively, the decay rate of the corre-

that the temporal evolution after the instability of the planarlati(;)dn.furr‘ftic;? Ic()f the dficr?otolmous dnoisg andh itskjntensitr)]/,
alignment of the director is an intermittent characteristic, andindd s the thickness of the electrodes. One should note that

found that the intermittency exhibits the third statistical lawthe present parameters, ey.andf(t), (_jo not directly cor
of on-off intermittencyQ(7)~ =~ 32 for the laminar dura- respond to th&e—E; and E(t), respectively, wher&(t) is

tion distribution. In order to identify that the intermittency the applied dichotomous noise aid is its critical value for
they found was on-off intermittency, it required checkinga givenv. Therefo_re, although our model can descnbe the
two other statistical laws. quantitative statistics of on-off convection, it is not suitable

Furthermore, by adding an additive noise, we studied thd°" the explanation of the experimental phase diagram.

role of thermal noise. It was found that if thermal noise is
absent, no practical pattern change is observed. For the ex-
perimental situation, thermal noise does not play a crucial
role, and Johnet al, also do not observe a meaningful = The main result of the present work was reported in Sym-
change of pattern in the course of time, although the signifiposia on Synchronization of Chaotic System, held in The
cant, on-off intermittent pattern change is obsery&6]. @ Abdus Salam International Center for Theoretical Physics,
However, no experimental study on pattern change has beérrieste(July, 2000. H. F. thanks U. Behn, R. Stannarius, and
carried out yet. A numerical and theoretical study as well ag'h. John for valuable and stimulating discussions during his
an experimental study along this line is also desirable. stay in Leipzig. This study was partially supported by a
Furthermore, we carried out the numerical integration ofGrant-in-Aid for Scientific Research No. 11837009 from the
Eqg. (3) by applying the dichotomous noisgt) with the  Ministry of Education, Science, Sports, and Culture of Japan.

In the present paper, we proposed a phenomenologic
stochastic model of instability predicted by Behn, Lange, an
John and very recently experimentally found by John, Stan
narius, and Behr{JSB in EC in a nematic liquid crystal
subject to a dichotomous stochastic electric field. The mod
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