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On-off convection: Noise-induced intermittency near the convection threshold
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A phenomenological nonlinear stochastic model of intermittency experimentally observed by Behn, Lange,
and John@Phys. Rev. E58, 2047 ~1998!# in the electrohydrodynamic convection in nematics under dichoto-
mous noise is proposed. This has the structure of the two-dimensional Swift-Hohenberg equation for local
convection variable with fluctuating threshold. Numerical integration of the model equation shows intermittent
emergence of convective pattern. Its statistics are found to obey those known, so far, for on-off intermittency.
In the course of time, although the pattern intensity changes intermittently, no evident pattern change is
observed. Adding additive noise, we observe an intermittent change of convective pattern.
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I. INTRODUCTION

Intermittency is a ubiquitous phenomenon in nonline
dynamics, and is characterized by abrupt insertions of s
tially or temporally highly random evolutions. The most f
mous one is known from the small-scale dynamics in hyd
dynamic turbulence@1#. In dynamical systems, several typ
of intermittent evolution of dynamical variables have be
observed in association with the destruction of limit cyc
oscillations@2,3#. In 1985, on the other hand, an interm
tency different from them was first reported when a parti
lar chaotic motion, i.e., synchronized chaos in a coupled c
otic oscillator system, undergoes the instability as
coupling constant is changed@4#. This intermittency has
quite interesting statistical laws@5#, and is now known as
on-off intermittency@6–8#. On-off intermittency has nowa
days been observed in many fields of dynamical syste
particularly, with small degrees of freedom@7#. Furthermore
very recently, the intermittency in systems with large degr
of freedom has been reported@8#.

Recently, Behn, Lange, and John~BLJ! @9# developed the
theory of the electrohydrodynamic convection in nematic l
uid crystal system subject to the spatially uniform dicho
mous noise without any temporally periodic field, and co
cluded the possibility of the existence of the instabil
leading to the onset of the electrohydrodynamic convec
~EC! as the amplitude of the noise is increased. Convent
ally, the survey of dynamics of the EC in the liquid-cryst
system has been carried out under the application of a t
porally periodic electric field@10#. In this sense, BLJ’s pre
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diction of the existence of the transition was quite une
pected. In addition, they predicted that the instability
planar alignment of directors may cause on-off intermitten
Very recently, John, Stannarius, and Behn@11# experimen-
tally proved the existence of the transition, and furtherm
verified the intermittency observed after the transition sho
a signal of on-off intermittency, observing the laminar dur
tion distribution, where the laminar state implies the plan
alignment of directors.

It is known that the on-off intermittency has three chara
teristic statistics@5#: ~i! the probability densityP(r) for r(t),
the magnitude of the deviation from the particular chao
submanifold, obeys the asymptotic lawP(r)}r211h with a
small positive valueh, ~ii ! the spectral intensity of the time
series$r(t)% exhibits a power lawv2(1/2) in a low-frequency
region, and~iii ! given an appropriately small thresholdr th ,
the probability densityQ(t) for the laminar durationt takes
an asymptotic formQ(t)}t2(3/2) in a certain wide range o
t @6#. The first two asymptotic laws are explained by solvi
a nonlinear multiplicative noise model for the time evolutio
of r(t), and the third law is derived by the theory of the fir
passage time problem of Brownian motion, which is simp
derived by dropping out the nonlinear term in the multip
cative noise model. Furthermore, according to the multip
cative noise model, the exponenth is obtained as

h5
l

G
, ~1!

wherel(.0) represents the deviation of the external cont
parameter from its critical value andG is the intensity of the
modulational noise of the so-called transverse expans
rate. Equation~1! explains numerical results for several mo
els quite well.
©2001 The American Physical Society01-1
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The main aim of the present paper is to report a stu
associated with the intermittent onset of the convective p
tern by utilizing a stochastic, dynamical model of EC subj
to external noise. However, for this aim, we do not intend
describe the fundamental equation of motion from the ba
electrohydrodynamic equations of motion, but we study w
a phenomenological equation of motion, constructed by
tending the basic equation in the convective problem i
simple neutral fluid.

The paper is prepared as follows. In Sec. II we propos
phenomenological equation of motion to imitate the BLJ
stability. This has the same structure as the Swift-Hohenb
equation with the modulational threshold. A few characte
tics of the model equation are discussed. The results o
numerical integration are given in Sec. III. It is shown th
the instability of the quiescent state~planar alignment in the
situation of BLJ! leads to the onset of the on-off intermitte
generation of a convective pattern. Furthermore, in conn
tion with the temporal change of the pattern form, the eff
of additive noise is studied. We give concluding remarks
Sec. IV.

II. PHENOMENOLOGICAL MODEL OF
ELECTROHYRODYNAMIC CONVECTION UNDER

MULTIPLICATIVE NOISE

The convection problem in a simple, neutral fluid h
been extensively studied both experimentally and theor
cally @12–15#. Near the convection threshold, there app
two kinds of modes: critical and noncritical. The former
directly relevant to the formation of a convective pattern a
the latter is stably slaved to the critical mode. Adiabatica
eliminating noncritical modes, Swift and Hohenberg~SH!
derived the amplitude equation

]w~r ,t !

]t
5@l2~“21k0

2!2#w2w3 ~2!

near the onset of convective pattern@13–15#. Herew(r ,t) is
the vertical component of macroscopic local velocity of flu
at positionr and timet, l is the deviation of the Rayleigh
numberR from its critical valueRc , i.e., l5R2Rc , k0 is
the most unstable wave number and“

2 the two-dimensional
~2D! Laplacian. Forl,0, all modes for any wave numberk
are linearly stable, and therefore the conductive solutionw
50 for any positionr is stable. If, on the other hand,l takes
a small positive value, the modes with wave numbers neak0
become unstable, which eventually produces the roll t
convective pattern with the wave numberk0.

In the present paper, we phenomenologically extend
SH equation~2! noting that the applied external force in th
BLJ case is a spatially uniform noise. We start with t
Swift-Hohenberg equation with random modulation in t
threshold term, i.e.,

]w~r ,t !

]t
5@l1 f ~ t !2~“21k0

2!2#w2w3. ~3!
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Herew(r ,t) is the amplitude of the local convection patter
i.e., describes the amplitude of the space-charge density
a fundamental wave number or the gradient of the lo
angle between director and the electrode plates in the exp
mental situation of BLJ. Thef (t) is the applied spatially
uniform modulation noise and is assumed to have a van
ing mean and the magnitudeG f ,

G f5E
0

`

^ f ~ t ! f ~0!&dt, ~4!

where the angular brackets stand for the ensemble avera
should be noted that the assumption that the applied exte
field is spatially uniform follows the theoretical—and th
experimental—conditions in Refs.@9,11#. The model equa-
tion ~3! always has a quiescent statew50, which corre-
sponds to the complete planar alignment of director to
electrodes. The linear stability of the conductive~planar
alignment! state is examined with thek-mode growth rate,

lk5l2~k22k0
2!2 ~k5uku!. ~5!

If l,0, there exists no unstable mode, and the spatial
tern eventually decays into the planar state. On the o
hand, the planar state is unstable for modes with wave n
bers aroundk5k0 for l>0. As numerically shown later, this
situation leads to the onset of the intermittent convect
pattern.

Before carrying out the numerical integration of Eq.~3!,
let us comment on the characteristics of the phenomenol
cal equation~3!. In the one-dimensional~1D! system, by
putting w5ceik0x1c.c. with the complex amplitudec,
which has a weakx dependence, Eq.~3! reduces to

]c~x,t !

]t
5Fl1 f ~ t !14k0

2 ]2

]x2Gc23ucu2c. ~6!

Here we have putw3'3ucu2ceik0x1c.c. by retaining only
the fundamental mode. This equation describes the dynam
of a convective pattern near the sinusoidal pattern under
modulational noise. On the other hand, in the 2D syste
when the roll aligns almost in thex direction, there still ex-
ists fluctuation of pattern alignment in they direction. This
can be taken into account as follows. Since the mode sa
fying the wave numberkx

21ky
25k0

2 is most unstable, and
kx5k01dkx , with dkx being small, we get 2k0dkx1ky

250.
So, by noting that the fluctuation scales asl x and l y respec-
tively, in the x and y directions are related asl x; l y

2 , the
amplitudec defined viaw5ceik0x1c.c., obeys

]c~r ,t !

]t
5Fl1 f ~ t !14k0

2S ]

]x
2

i

2k0

]2

]y2D 2Gc23ucu2c.

~7!

Here the approximationw3'3ucu2ceik0x1c.c. has been
used. This is an extension of the Newell-Whitehead equa
in a simple, neutral fluid system@12# to the case with the
fluctuation-modulated threshold.
1-2
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ON-OFF CONVECTION: NOISE-INDUCED . . . PHYSICAL REVIEW E64 036201
FIG. 1. ~a! Temporal evolution ofr(t) ob-
tained by numerically solving Eq.~3!. The initial
condition was chosen such that initiallyw(r ,0) at
each lattice point, is randomly distributed close
zero. The parameter values areD510 and g
550 (G f5431023). ~b! and~c! Spatial patterns
at the times 3500 and 4927, respectively. The
patterns correspond to the times denoted by
arrows in~a!.
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III. ON-OFF CONVECTION
AND EFFECT OF THERMAL NOISE

Hereafter we consider the 2D system contained in a
with the linear scaleL. The quantityr(t) which measures the
extent of the deviation from the planar alignment of direct
is defined by

r~ t !5H 1

L2E @w~r ,t !#2dr J 1/2

. ~8!

In other words, this quantity evaluates the intensity of
convective pattern. If there exists no convective motion, o
obtainsr(t)50.

In order to carry out the numerical integration of Eq.~3!
for the 2D system, the system is divided intoN3N sites with
the lattice spacingDx. We will use the periodic boundar
condition. The applied spatially uniform random forcef (t) is
assumed to be generated by the Ornstein-Uhlenbeck pro

ḟ ~ t !52g f ~ t !1R~ t !, ~9!

whereR(t) is the Gaussian white noise with the statistics

^R~ t !&50, ^R~ t !R~0!&52Dd~ t ! ~10!

with positive constantsg andD corresponding, respectively
to the inverse characteristic time off (t) and the intensity of
R(t). The noise intensityG f of f (t) is therefore given as

G f5
D

g2
. ~11!

We numerically solved Eq.~3! with the quasispectra
method, combining the Euler method for time integratio
Namely, givenw(r ,t), in terms of its Fourier transform
wk(t), Eq. ~3! is numerically solved as

wk~ t1Dt !5wk~ t !1$@lk1 f ~ t !#wk~ t !2~w3!k~ t !%Dt,
~12!

with the combination of solving Eq.~9! as
03620
x

,

e
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f ~ t !5
@12~g/2!Dt# f ~ t2Dt !1A2DDtG~ t !

11~g/2!Dt
, ~13!

whereG(t) is the Gaussian noise with the mean^G(t)&50
and the variancêG(t)2&51. Carrying out the inverse Fou
rier transform ofwk(t1Dt), we obtainw(r ,t1Dt). Repeat-
ing this procedure, we can numerically integrate Eq.~3!.
Hereafter we use the parameter valuesN532, l52
31023, k050.25, Dx5p, Dt5531024, unless other-
wise stated.

Figure 1~a! shows the temporal evolution ofr(t) obtained
by numerically solving Eq.~3! and Figs. 1~b! and 1~c! are the
spatial patterns, respectively, corresponding to the times
noted by the arrows in Fig. 1~a!. One clearly observes tha
the temporal evolution ofr(t) shows an intermittency com
posed of laminar time intervals where no apparent patt
change is observed and a burst region where the spatial
tern with the wave numberk0 is observed. The pattern for
mation is observed in temporally highly localized region
The temporal evolution, as shown in Fig. 1~a!, is quite simi-
lar to the so called on-off intermittency@4–8#. In order to
examine the statistics of the temporal evolution ofr(t), we
will compare the statistical laws of on-off intermittency wit
those from Fig. 1~a!. To do that, we first have to know th
value of the noise intensity of local transverse expans
rate. This is calculated as follows. Ifr(t) is sufficiently
small, it obeys

ṙ~ t !5@l1 f ~ t !#r~ t !2
1

r~ t !L2

3E @~“2w!222k0
2~“w!21k0

4w2#dr . ~14!

We neglected the contribution from the nonlinear termw3 in
Eq. ~3! becauser(t) is small enough, and used the period
boundary condition. Since the most unstable mode ri
above the threshold (l.0) has the wave numberk0, we
make the approximation to replace (“

2w)2 and (“w)2 in
Eq. ~14!, respectively, byk0

4w2 andk0
2w2. This replacement

leads to the approximate equation of motion
1-3
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HIROKAZU FUJISAKA, KATSUYA OUCHI, AND HIDENORI OHARA PHYSICAL REVIEW E 64 036201
ṙ~ t !5@l1 f ~ t !#r~ t !. ~15!

This equation has a particular solutionr50, which is con-
sistent with the fact that Eq.~3! always has the same particu
lar solutionw(r ,t)50 for any t and r . This equation is the
same as the linearized stochastic multiplicative noise mo
and therefore the extra exponenth in P(r), the steady prob-
ability density forr(t), is given byh5l/G f , as in Eq.~1!.

Figures 2~a!, 2~b!, and 2~c! are comparisons with numer
cal results derived from the time series ofr(t) and the above
theoretical results of on-off intermittency. Probability den
ties are obtained forl51024, 531024, 1023, and 1.5
31023, and G f5431023 (g550,D510). Values of the
exponent (211h) in P(r)}r211h, corresponding to sev
eral values ofl, were calculated byh5l/G f , and are de-
noted by20.625,20.75, etc., in Fig. 2~a!. One finds good
agreement with numerical results. In Fig. 2~b!, the power law
v2(1/2) is observed in a smallv region, although the region
where it holds is not sufficiently wide. It is expected that

FIG. 2. Statistical laws ofr(t) numerically obtained:~a! prob-
ability density;~b! power spectrum; and~c! laminar duration distri-
bution. For details see the text.
03620
l,

-

we use a more long-time series, thev2(1/2) region may be-
come wider. In Fig. 2~c!, the laminar duration distribution
clearly shows thet2(3/2) law. Here the thresholdr th separat-
ing laminar and burst states is chosen as 0.01. The expo
3/2 does not depend on the choice ofr th as long as it is small
enough. One finds that the agreement of the present sta
cal characteristics, with those of on-off intermittency, is qu
well. This numerically proves that the present intermitten
in Fig. 1~a! is identical to the on-off intermittency. Analyzing
the temporal evolution of the pattern intensity, we found th
the pattern appears intermittently provided the planar ali
ment with w'0 becomes slightly unstable under the app
cation of the multiplicative noise. We call this phenomen
on-off convection.

The next question concerns the temporal evolution of p
tern. A primitive picture on the temporal evolution of patte
is as follows. Given initial condition, the system~3! ap-
proaches a steady state and forms an on-off convective
tern, whose wavelength is about 2p/k0 for small l(.0).
Due to the multiplicative noise effect, this pattern disappe
~the laminar region!. The disappearance of pattern may d
stroy the memory of the details of the previous precise p
tern. In a certain time, a new pattern would be sudde
generated, and this pattern might be different from the p
vious one. Figure 3 shows the numerical results of the te
poral evolution of patterns. Figures 3~b! and 3~c! are patterns
at the times denoted by the arrows in the temporal evolu
of r(t) of Fig. 3~a!. Between the times corresponding
Figs. 3~b! and 3~c!, there exist several laminar regions. Th
above picture on the pattern change leads to the conclu
that the patterns at these times are different. However
shown in Figs. 3~b! and 3~c!, the system almost keeps it
initial pattern once it is created, and only the pattern intens
intermittently changes in time. This means that the patt
reserves its memory in a robust way. This fact can be un
stood as follows. When a pattern decays due to the n
effect after a pattern is formed, the equation of motion~3!
can be approximated only by the linear term ifr(t) becomes
quite weak. Even for smallr(t), the system still reserves it
pattern$w(r )%, which again increases their local intensity
$w(r )% in a spatially synchronized way when noise wi
positive $l1 f (t)% is applied. Therefore, the pattern grow
and decline sets in, in a synchronized way. This is the rea
why the pattern form does not change in time, except for
intensity.

As shown above, the convective pattern does not cha
for the equation of motion~3!. In real systems, the tempora
evolution is affected by thermal noise. To take thermal no
into account, we consider the equation of motion

dw~r ,t !

dt
5@l1 f ~ t !2~“21k0

2!2#w2w31g~r ,t !, ~16!

whereg represents the thermal noise and is supposed to
Gaussian white,

^g~r ,t !&50, ^g~r ,t !g~r 8,t8!&52Ggd~r2r 8!d~ t2t8!.
~17!
1-4
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FIG. 3. ~a! Temporal evolution ofr(t) with-
out thermal noise forl5231023. ~b! and ~c!
Spatial patterns ofw(r ,t), respectively, at times
t59568 and 17 738 denoted by the arrows in~a!.
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The Gg evaluates the intensity of thermal noise. Equat
~16! is numerically solved as

w~r ,t1Dt !5w0~r ,t1Dt !1A2Gg

Dt

~Dx!2
G~r ,t !,

~18!

wherew0(r ,t1Dt) is equivalent tow(r ,t1Dt) numerically
obtained in the case without thermal noise, i.e., the inve
Fourier transform of Eq.~12!. The G(r ,t) is the Gaussian
noise with the vanishing mean and the variance
03620
n

e

^G~r j l ,tn!G~r j 8 l 8 ,tn8!&5d j j 8d l l 8dnn8 , ~19!

wherer j l is the lattice position corresponding to the 2D la
tice point index (j ,l ) andtn5t01nDt, (n50,1,2, . . . ).Fig-
ure 4~a! displays the temporal evolution ofr(t) and shows
that the intermittency characteristic is still reserved as far
Gg is small. Figures 4~b! and 4~c! show the spatial patterns a
times denoted in Fig. 4~a!. These figures clearly show th
spatial pattern after insertion of laminar states. This pro
that the pattern change is not due to the threshold fluctua
but due to the existence of the additive noise correspond
to thermal noise.
FIG. 4. ~a! Temporal evolution ofr(t) with
thermal noise forl51024 and Gg5p231028.
~b! and ~c! Spatial patterns ofw(r ,t) at timest
546 745 for~b! and 65 813 for~c! denoted by the
arrows in~a!.
1-5
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IV. CONCLUDING REMARKS

In the present paper, we proposed a phenomenolog
stochastic model of instability predicted by Behn, Lange, a
John and very recently experimentally found by John, St
narius, and Behn~JSB! in EC in a nematic liquid crysta
subject to a dichotomous stochastic electric field. The mo
is fundamentally the same as the Swift-Hohenberg equa
but contains the modulation threshold.

Numerically solving the phenomenological model, w
found that the statistical laws derived from the temporal e
lution of the model dynamics, are the same as those kn
for the on-off intermittency reported in systems with sm
degrees of freedom. On the other hand, Johnet al., observed
that the temporal evolution after the instability of the plan
alignment of the director is an intermittent characteristic, a
found that the intermittency exhibits the third statistical la
of on-off intermittencyQ(t);t2(3/2) for the laminar dura-
tion distribution. In order to identify that the intermittenc
they found was on-off intermittency, it required checkin
two other statistical laws.

Furthermore, by adding an additive noise, we studied
role of thermal noise. It was found that if thermal noise
absent, no practical pattern change is observed. For the
perimental situation, thermal noise does not play a cru
role, and Johnet al., also do not observe a meaningf
change of pattern in the course of time, although the sign
cant, on-off intermittent pattern change is observed@16#.
However, no experimental study on pattern change has b
carried out yet. A numerical and theoretical study as wel
an experimental study along this line is also desirable.

Furthermore, we carried out the numerical integration
Eq. ~3! by applying the dichotomous noisef (t) with the
-
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vanishing mean and̂ f (t) f (0)&5 f 0
2e2gutu instead of the

Gaussian noise obeying the Ornstein-Uhlenbeck proc
whereg.0 is the decay rate of correlation, and found th
the qualitative results of the statistics do not change. T
fact implies that the present on-off convection is free fro
details of applied noise, and supports the universality of
onset of on-off convection. In this sense, the present mo
deserves a simple nonlinear stochastic model of electro
drodynamic convection, theoretically and experimenta
studied by Behn and his co-workers.

JSB reported the experimental phase diagram for cond
tive and convective regions in then([g)2U([Ed) plane,
whereg andE are, respectively, the decay rate of the cor
lation function of the dichotomous noise and its intensi
andd is the thickness of the electrodes. One should note
the present parameters, e.g.,l and f (t), do not directly cor-
respond to theE2Ec andE(t), respectively, whereE(t) is
the applied dichotomous noise andEc is its critical value for
a givenn. Therefore, although our model can describe
quantitative statistics of on-off convection, it is not suitab
for the explanation of the experimental phase diagram.
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